<<12345>>
6.

if  f(x) =x for x≤ 0

             =0 for x >0 , then f(x) at x=0 is


A) continuous but not differentiable

B) not continuous but differentiable

C) continuous and differentiable

D) not continuous and not differentiable



7.

If the  inverse of the matrix $\begin{bmatrix}\alpha & 14&-1 \\2 & 3&1\\6&2&3\end{bmatrix}$  does not exist, then the value of $\alpha$ is 


A) 1

B) -1

C) 0

D) -2



8.

 The objective function of LPP defined over the convex set attains it optimum value at


A) atleast two of the corner points

B) all the corner points

C) atleast one of the corner points

D) None of the corner points



9.

$\int_{0}^{3} \left[x\right]$ dx=........., where [x] is greatest integer function,


A) 3

B) 0

C) 2

D) 1



10.

If c denotes the contradiction  , then dual of the compound statement $\sim p\wedge(q\vee c)$


A) $\sim p\vee(q\wedge t)$

B) $\sim p\wedge(q\vee t)$

C) $ p\vee(\sim q\vee t)$

D) $ \sim p\vee( q\vee c)$



<<12345>>